Comment

The Apkallu Initiative: A Minilithic Artefact for Rebooting Human Civilization in the Event of Global Cataclysm

The Apkallu Initiative Logo_150dpi.jpg

The year is 2050. Earth is a thriving metropolis with a population exceeding 9 billion. Progress has been made in harmonising social-cultural tensions around the world and nation state war is now an infrequent event. A young child of the future steps out into the bright sun shine of a gorgeous new morning. Her day is still ahead of her as she out stretches her arms and smiles at the mellifluous call of the singing birds. But then looking up, she notices something in the distance, a long streak across the sky that is moving rapidly, and seems to be descending towards the ground. It disappears behind the horizon, and shortly later a blinding flash engulfs the world. The girl looks on stunned, eyes struggling against the light, to see the gradual build-up of a mushroom cloud that starts to reach high into the atmosphere. The impact event was hundreds of miles away, yet soon it engulfs the world in a global climate change and sends Tsunami’s sweeping over coastal cities destroying all in the path. In response to oceanic earthquakes, the water becomes so big, that it pushes across the flat land masses; unrelenting mega white horses to a trampled poppy field below. One day, this will form into wedge shaped chevron deposits hundreds of feet high, composed of ocean floor micro-fossils. Within days of the event the girl will learn that billions of people are wiped out as the human civilization draws to a rapid stagnation. All infrastructure and governments are gone, and only small pockets of communities around the world survive, numbering thousands at best. She was one of the lucky ones, her small community of one hundred people survived just barely on their high mountain top position. This is fortunate for a girl named Hope.

= = =

Introduction

The future is uncertain. Whilst it is important to emphasise the positive reasons for the exploration of Earth and space, it is also important not to be in denial about the risks that really face us; for they are not insignificant. They are many and varied in type. From the potential for nation state warfare, to disease pandemics, to global climate change, to risks from above such as impact events by asteroids or comets or even the possibility alien invasion. The sure way to guarantee our survival is to follow the lead of Elon Musk and to make the human race an interplanetary species; and indeed to go further with an interstellar species. But until we have reached this point we are vulnerable. The proposal made in his article is not an alternative to the current plans for the colonization of space and the continued building up of infrastructure, but it is a complimentary pathway to increase the probability of human survival into the coming centuries. In particular, it should be taken on board that the assumptions of this project is that a possible future exists where rocket technology no longer even exists as a worst case survival scenario.

The Apkallu initiative is a proposed project to help re-boot human civilization, on the assumption that some small pockets of human communities survive around the world during a global cataclysm, but all the remnants of our industrialised and developed civilization are destroyed. This includes our cities, our farms, our libraries, our infrastructure, and our transport networks; in essence the human race is thrown back to being a hunter-gatherer species and must begin again. It is named after the Sumerian sages who are said to have helped human kind establish civilization and culture and giving us the gifts of a moral code, mathematics, architecture, agriculture and all ways necessary to teach us how to become civilized. The Sumerian civilization is one of the first to appear in recorded history, which included the invention of its own writing form called Cuneiform. Before we discuss what the Apkallu initiative actually is, it is worth reminding ourselves of some essential context.

Impact Threats and Other Risks to Human Survival

We know that objects have impacted the Earth throughout its history and continue to do so today. Approximately 66 million years ago, it is believed that an impact event resulted in the Cretaceous-Tertiary (K-T) extinction. This led to devastation in the global environment and a prolonged winter which affected the photosynthesis of plants and plankton life. It also resulted in the destruction of a plethora of terrestrial organisms, including mammals, birds, insects and most famously the dinosaurs. The object, an asteroid or comet, was 10-15 km in diameter with a likely impact velocity of around 20 km/s and an associated kinetic energy of impact of around 30,000 – 1000,000 Gtons TNT equivalent, depending on the assumptions. It left an impact crater in the Yucatain Peninsula in Mexico, and likely created 300 feet high Tsunami’s over an impact zone of around 3,000 miles.

Another example is the Arizona Meteor crater, which was the result of a Nickel-Iron object around 50 m in size impacting the Earth 50,000 years ago. With impact velocities ranging from 2.8 – 20 km/s this would have impacted with an associated kinetic energy of 10.7 – 26.2 Mtons TNT equivalent. Today, a crater remains of the impact event, 1.2 km in diameter and over 550 feet deep.

In 1908 a comet is believed to have impacted eastern Siberia, causing a flattening of a forest 2,000 square km in size. Since no impact crater was found, it is believed that the object disintegrated at an altitude of 5 – 10 km above the ground. The estimated energy of the air burst explosion was 10 – 15 Mtons TNT equivalent; depending on the assumptions one makes.

In July 1994 a comet split into 21 fragments ranging in size up to 2 km, and impacted the upper atmosphere of Jupiter with an impact velocity of around 60 km/s. The total energy of these impacts was around 6,000 Gtons TNT equivalent creating dark red spots with some being 12,000 km in size. Had this comet impacted the Earth, it would have posed a major threat to human existence.

During late 2017 we observed the close flyby pass of an asteroid of interstellar origins named ‘Oumuamua. Much of the nature of this objects remains uncharacterised, but some sensible estimates of the maximum potential impact energy suggest 4.2 – 46.9 Gtons TNT equivalent, had it impacted the Earth.

Then in April this year that an object named Asteroid 2018 GE3 passed closed to Earth and was spotted 119,500 miles away, which is closer than the Moon, which orbits at an average distance of 238,900 miles. The object was first observed by the NASA funded Catalina Sky Survey project based at the University of Arizona Lunar and Planetary Laboratory. It was first observed a mere 21 hours before the closest approach to the Earth. The object was estimated to be at least 150 – 360 ft in diameter.

How many more are out there waiting for us? No doubt some will argue that the impact risks are statistically small and we should not be concerned about them. We know there are many asteroids in our own Solar System, varying in size from 1 m up to 1,000 km. Approximately 16,000 objects have been found near Earth, but this is a small fraction of the estimated total that is out there, which varies between 1 – 2 million. Statistically, this presents a threat to human existence and life as we know it. Indeed, it is the belief of this author that impact events which can lead to global devastation of the human population may be as frequent as 1/1,000 – 1/10,000 years.

In addition to impact risks there are many other threats to human existence. This may include the implications of magnetic field reversal. Such an event occurred 41,400 years ago during the last ice age, called the Laschamp event. It caused a magnetic field reversal leading to a drop in its strength. This resulted in more cosmic rays reaching the Earth and an increased production of the isotopes Beryllium 10 and Carbon 14.

There are also the risk of enhanced solar activity such as through large scale solar flares, or the possibility of the Sun entering unstable periods in its evolution for which are current models of stellar-structure are not aware. This could be due to the passage of our Sun through the spiral density arms of the galaxy. There are the risks of nation state war or even global thermonuclear war that could drive us towards extinction, either through direct destruction or through altering the climate. There are the risks of human disease pandemic, which surely must become more probable in an increasing global population. There are the risks of human destruction of elements of the biosphere, such as pollutions of the oceans, soils, deforestation or polluting of the atmosphere. There are the risks that microbes could be introduced into our biosphere from an alien planet that is infectious to our biodiversity.

Then there is the actual risk of alien invasion, from a species set on conquering other lower species or seeking resource acquisition no matter the costs. It may be assessed that some of these are low probability. However, the fact that there are so many risks to the future survival of human kind should be a concern, and it is vital that we take a proactive approach to adaptability and survival, instead of a reactive one when such events occur.

Assumptions of a hypothetical Near-Human Extinction

Imagine a situation where human kind is nearly wiped out by some global cataclysm. This could be an impact event or one of the other risks highlighted earlier. In a worst case scenario, but one where some humans survive, we might make the following assumptions:

1.       All infrastructure is destroyed, to include buildings, power utilities, city plumbing, damns, transport networks, agriculture and farming, huge portions of the plant and animal kingdom.

2.       All information sources are destroyed, to include all the world libraries, computers and electronic memory. It is possible that some books will be discovered over time as communities explore the rubble remaining from the metropolis. Books would become precious beyond their current value.

3.       The global climate is in turmoil and hostile, but with isolated regions of stability such that with determination survival is possible.

4.       The geological, climatic, oceanic activity and effects of the cataclysm event, within weeks, months or years will gradually return towards some level of stable Earth.

5.       Small pockets of humans survive around the Earth, perhaps 10s to 100s each but with the total not exceeding thousands.

Given this scenario, we can note that the surviving generation will remember the world as it was before. They will use this knowledge to teach their children. At this point knowledge is based upon direct memory. Those children will then grow up, with their parents dying off, and they will remember what their parents taught them and some of those children may even have some memories of the world before. But for the most part we are dealing here with recent history and part mythology. The grandchildren will also be born and grow up, but they will have no direct memory of the world the way it was before. At this point we are dealing with history and mythology. Within the third or fourth generation there is a risk that all knowledge will be lost, and especially if that knowledge is not captured and written down. All received knowledge then becomes both mythology and fantasy.

There are solutions to this practiced by the Native North Americans for example, which is to communicate stories verbally and also use this to impart wisdom, and those stories are accompanied by rituals. However, one cannot believe that such a method of communication does not contain significant information error propagation with each successive generation, compared to the original version.

The History of Humans on Planet Earth

In the event of a global cataclysm, assuming small pockets of human communities survive, but the majority of human civilization and associated technological infrastructure is destroyed, how can we ensure a chance at rebooting human knowledge? Indeed, is it possible that this has in fact occurred in the recent past and this is a part reason for the many Megalithic structures on Earth?

Until recently, Sumer was the earliest known civilization in the historical Mesopotamia, and is located in modern Iraq. It dates back to 3,000 B.C and was likely settled around 4,000-5,500 B.C by proto-Euphrateans or Ubaidians. The people from this era are credited for many great inventions and discoveries which led to the advance of their society. This includes in mathematics, geometry, agriculture, architecture, economics and law to name a few. One of the most famous objects discovered from this period is the Code of Hammurabi, a 2.25 m tall stone wall consisting of 282 laws, such as “an eye for an eye” and is the first legal system from the Old Babylonian period.

IMG_5587.JPG

The Code of Hammurabi, created 1750 B.C, currently housed at the Louvre, Paris (image credit: K. F. Long)

It is important to note that in the Babylonian creation mythologies, which were written in Cuneiform, there are around a thousand lines of text on seven clay tables. The focus of this text is the creation of humankind for the service of the gods. These texts are called the Enûma Eliš, and arguably they have a clear lineage to the Judea-Christian Bible. The Cuneiform script was scribed, using a wedge-shaped marker onto a wet clay tablet and also cylinder seals. These are small round objects typically an inch in length engraved with information. Once dried the inscription was permanent. The information preserved on tablets and seals was Cuneiform text but also contained figurative scenes or descriptions of events or objects. Such objects are breath-taking in their clarity, gorgeous in their artistic nature, and contain a wealth of information about the society, its rituals, values, business, science and technology.

FD9AB0D1-8474-4EF9-8F72-E08C567F3D67.jpeg

Photographs of Sumerian Cylinder Seals from the Private Collection of the Author (image credit: K. F. Long)

The Holy Bible records a flood story that engulfed all of planet Earth. This is recorded in Genesis chapters 6 – 9, and the flood seems to last for around one hundred and fifty days. Other cultures have recorded similar stories. For example the Sumerian tale of Ziusudra and the Atra-Hasis also describes a global flood story that is similar to that told in Genesis. In the Sumerian story the flood lasts for seven days. An account is also told in the Epic of Gilgamesh, which is more similar to the Biblical story. Also, the Hindu mythology tells of a great flood in the Satapatha Brahmana. It is very easy to dismiss the possibility of a global flood as pure mythology, but the occurrence of a similar story in so many cultures around the world is at least suggestive that it may be a memory of an actual event which many today are regarding as mythology. Indeed, science may be catching up with the past.

Geologists and climatologists study a period in Earth’s history called the Younger Dryas, which occurred 12,900 to 11,700 years ago and saw a return to glacial conditions which temporarily reversed the gradual climatic warming after the last glacial maximum which began receding around 20,000 years ago. It led to many catastrophic effects including the decline of the Clovis culture in North America and the extinction of many megafauna which included the Mammoths; the last of which survived into the Holocene around 4,500 years ago in Africa, Europe, Asia and North America.

Picture1.jpg

Illustration of the Younger Dryas period

In recent years, evidence is emerging that the Younger Dryas period may have been caused by a cometary impact event on the North American ice sheet, around 12,900 years ago. The evidence for his includes the discovery of a 10 million ton deposit of impact spherules across four continents, and the discovery of a Nano-diamond rich layer. In addition, analysis of underground soils indicates massive wildfire and abrupt ecosystem disruption on California’s Northern Channel Islands. Scientists have also discovered very high temperature impact melt products as evidence for an air burst explosion. All of this is dated to around 12,900 years ago, at the onset of the Younger Dryas. If this is proven to be correct, then a global cataclysm may indeed have occurred in our recent past. Speculating, if any advanced civilizations existed on Earth prior to this date, they may have been wiped out by this cataclysm forcing civilization to start from the beginning again.

At some point in our past we moved from a hunter-gatherer species to an agricultural-farming one, where we embraced the domestication of animals and crops. This is marked by a period called the Neolithic, and occurred around 10,200 years ago. It is considered to be the last period of the stone age and commenced the beginning of the Neolithic revolution. It ended with the emergence of the Copper and Bronze and Iron ages and our new abilities to use metals. It is remarkable that we have apparently exploded technologically and social-culturally over the last 10,000 years or so to the state where we have computers, cars, aeroplanes and communication satellites. What was it that propelled us forward over such a short space of time? Why had we not achieved this level of maturity previously? Was it the formation of a critical population density? Was it global climatic conditions? What is our tribal nature and inability to get organized? What it some other threats to our existence?

Homo sapiens in our modern form may be several hundred thousand years old. Paleolithic cave art certainly goes back to 40,000 years but may be 60,000 years if we include what is currently being claimed to be art from Neanderthal man. Evidence from the out of Africa hypothesis puts homo sapiens at around 130,000 - 180,000 years old. But there are alternative versions which claim populations emerging out of Africa as early as 350,000 years ago. Evidence for older findings includes discoveries of anatomically modern human skull fossils at Jebel Irhour in Morocco (315,000 years) and Middle Awash in Ethiopia (160,000 years). The history of human evolution is far from settled and ‘thinking man’ may be much older than we realised.

 

Ancient Megaliths

A story from ancient Sumeria is that of an amphibious being called Oannes (also known as Adapa) who apparently taught human kind wisdom. The story was told by Berossus in 290B.C, a Chaldean Priest in Babylon. Berossus described Oannes as having the body of a fish but underneath the figure of a man. He is said to dwell in the Persian Gulf, rising out of the waters in day time and furnishing human kind in the instruction of writing, arts and other subjects. Here are the words of Berossus:

"At first they led a somewhat wretched existence and lived without rule after the manner of beasts. But, in the first year appeared an animal endowed with human reason, named Oannes, who rose from out of the Erythian Sea, at the point where it borders Babylonia. He had the whole body of a fish, but above his fish's head he had another head which was that of a man, and human feet emerged from beneath his fish's tail. He had a human voice, and an image of him is preserved unto this day. He passed the day in the midst of men without taking food; he taught them the use of letters, sciences and arts of all kinds. He taught them to construct cities, to found temples, to compile laws, and explained to them the principles of geometrical knowledge. He made them distinguish the seeds of the earth, and showed them how to collect the fruits; in short he instructed them in everything which could tend to soften human manners and humanize their laws. From that time nothing material has been added by way of improvement to his instructions. And when the sun set, this being Oannes, retired again into the sea, for he was amphibious. After this there appeared other animals like Oannes.“

Whether this is pure fiction or has any resemblance to historical events does not matter, but it is this story that has given rise to the idea of building what this author is calling a ‘minilithic artefact’ under the Apkallu Initiative as will be discussed further below. As an aside it is worth noting that in his book ‘Intelligent Life in the Universe’, written with L. S. Shklovskii (Pan Books, 1977), the astronomer Carl Sagan opened a discussion on the Sumerian civilization with “I came upon a legend which more nearly fulfils some of our criteria for a genuine contact myth”.

On planet Earth we know that species rise up and fall and suffer extinction. The fossil record has shown this for many a species. There are also arguments that Homo Sapiens are not the only occurrence of intelligence on Planet Earth (see for example the recent book ‘Other Minds’ by Peter Godfrey-Smith’ on the Octopus, William Collins, 2016). Why then is it not possible, in the last million years, that an earlier species of man, or other life form on Earth, could have evolved to similar levels of intelligence to that which we possess today, to include a technological level similar in extent? Such a people would predate modern recorded history, and it is at least plausible that some memory of them could be preserved in the creation mythologies of our various ancient cultures.

Many ancient Megalithic structures have been found by archaeologists around the world. This includes for example the Great Pyramid and the Great Sphinx in Giza (4,500 years old), Tiwanaku and Pumapunku in West Bolivia (3,500 years old), Stone Henge in England (5,000 years old), Machu Picchu in Peru (550 years old) to name a few. However, recently our linear understanding of human evolution from a hunter-gatherer species to an agricultural-farming one has been placed under scrutiny, by the discovery in 1996 of Gӧbekli Tepe, a site in the South eastern Anatolia region of Turkey, which may date back to 12,000 years old. The site demonstrates a superior knowledge of construction techniques, geometry and other disciplines and to enable its construction would have required a food surplus to exist – before the arrival of the Neolithic revolution. In addition, it is arguable that to get to a point where you can construct something like Gӧbekli Tepe would take thousands of years of advancement of knowledge in itself. This might suggest that the builders were 15,000 - 20,000 years old.

A potentially even older site has also been found in West Java, called Gunung Padang, which was discovered in 1914.  It may be the largest megalithic site in South Eastern Asia. Radiocarbon dating puts the site at several different eras spanning 6,500 – 20,000 years ago, although the dating claims are controversial among archaeologist in Indonesia. A large structure has also been discovered beneath the surface some 15 m down and includes large chambers. This discovery, and that of Gӧbekli Tepe, is telling us that our linear understanding of history is in need of revision.

Interglacial Periods in Earth’s History

Given the existence of Gӧbekli Tepe and Gunung Padang, the idea that an earlier intelligent and advanced civilization existing on Earth is not so implausible. However, were there opportunities in Earth’s history for this to occur? An examination of climatic conditions would seem to suggest so.

During the history of Earth there have been five major ice ages, and we are currently in the Quaternary Ice Age at this time, which spans from 2.59 million years ago. Within the ice ages are sub-periods known as glacial and interglacial periods.

Recent measurements of the relative Oxygen isotope ratio in Antarctica and Greenland show the periods of glacial and interglacial periods throughout history over the last few hundred thousand years. This is a measurement of the ratio of the abundance of Oxygen with atomic mass 18 to the abundance of Oxygen with atomic mass 16 present in ice core samples, 18O/16O, where 16O is the most abundant of the naturally occurring isotopes. Ocean water is mostly comprised of H216O, in addition to smaller amounts of HD16O and H218O. The Oxygen isotope ratio is a measure of the degree to which precipitation due to water vapour condensation during warm to cold air transition, removes H218O to leave more H216O rich water vapour. This distillation process leads to any precipitation to have a lower 18O/16O ratio during temperature drops. This therefore provides a reliable record of ancient water temperature changes in glacial ice cores, where temperatures much cooler than present corresponds to a period of glaciation and where temperatures much warmer than today represents an interglacial period. The Oxygen isotope ratios are therefore used as a proxy for temperature changes by climate scientists.

The Vienna Standard Mean Ocean Water (SSMOW) has a ratio of 18O/16O = 2005.2×10-6, so any changes in ice core samples will be relative to this number. The quantity that is being measured, δ18O, is a relative ratio calculated as in the units of % parts per thousand or per mil. The change in the oxygen ratio is then attributed to changes in temperature alone, assuming that the effects of salinity and ice volume are negligible. An increase of around 0.22% is then defined to be equivalent to a cooing of 1˚C.

There are differences in the value of δ between the different ocean temperatures where any moisture had evaporated at the final place of precipitation. As a result the value has to be calibrated such that there are differences between say Greenland and Antarctica. This does result in some differences in the proxy temperature data based on ice core analysis, and Greenland seems to stand out, such as indicating a more dramatic Younger Dryas period (11,600 – 12,900) than other data.

An analysis of this data shows that the climate has varied cyclically throughout its history and is manifest of natural climate change. In particular what emerges out of the data are some interesting lessons about the recent history of planet Earth. Data shows the rapid oscillations of the climate temperature from the average temperature of today, indicative of glacial and interglacial periods. In particular, the data shows that during the Holocene period, beginning approximately 11,700 years before present, the temperature varied between 2-4 ˚C.

It is reasonable to assume that human civilizations under development will do better when the climate is kinder. This means that the warmer it is the better civilisations will do, and the colder it is, the harder the struggles. In particular we can expect that during the conditions of a colder climate that agricultural farming will suffer, and so there will be less food to go around, which will affect both life span and population expansion. To support this it is worth noting that the current epoch, the last 10,000 years has been one of the longest interglacial period for at least the last quarter of a million years and it is reasonable to therefore assume that this is one of the factors which has allowed human development from the emergence of the Neolithic period coming out of the last ice age.

The data also shows that there was a large global warming period known as the Eemian around 115,000 – 130,000 years ago. The average global temperatures were around 22 – 24 ˚C, compared to today where the average is around 14 ˚C. Forests grew as far north as the Arctic circle at 71˚ latitude and North Cape in Norway Oulu in Finland. For comparison North Cape today is now a tundra, where the physical growth of plants is limited to the low temperatures and small growing seasons. Given that homo sapiens may have been here since around 300,000 years ago, this seems like a major opportunity for the development of human society from a people of hunter gatherers to one of agricultural developers and the development of a civil society.

There have been other interglacial periods that have resulted in global temperatures being either equivalent or above the average today, and the data shows temperature spikes of periods at around 200,000 years, 220,000 years, 240,000 years, 330,000 years and 410,000 years. Each of these interglacial periods will typically last at least 10,000 years.

Capture.PNG

Temperature Proxy Data Showing Opportunities for the Rise of Advanced Civilization in Recent Pre-History

The Apkallu Initiative

It is fully admitted that much of the above contains some speculation, but until we have a firmer grasp of history it would be unwise to rule such possibilities out. We turn our attention then to the future and solving the problem of how to preserve human knowledge in the event of a global cataclysm such that human kind can restart again so that within centuries we mature back to similar levels of today’s technological advancement. Ultimately this is a statistical problem, in that by reducing the time of each cycle for maturing to technological capability, one improves the probability of survival. It is sensible to think of this concept as a civilization accelerator.

The Apkallu Initiative is therefore a proposal to construct a minilithic artefact (analogous to Megalithic artefacts) that can survive for a time duration exceeding 100,000 years. This duration is chosen for three principal reasons:

1.       The recent ice core records suggest that within that time period there may be several opportunities (~4) where the climatic conditions are sufficiently supportive for human existence to facilitate growth beyond basic survival.

2.       It approximately corresponds to four processional cycles of the Earth around the equinoxes, which typically last 25,920 years. We note that many of the ancient Megaliths seem to have been pre-occupied with the measurement of the equinoxes; which may relate to lost memory of previous cataclysms.

3.       It is difficult to design for an artefact that can survive longer than this, although desirable.

The artefact would be a form of archaeological-architectural device from the stand point of future humans who uncover it. The device would be replicated perhaps 1,000 times and distributed around the seven continents of the Earth. Ideally, some could also be placed in space, on the Moon or Mars.  The idea is that any future human surviving a global cataclysm that finds this artefact and studies it sufficiently, it will give them the knowledge they need to rapidly advance human civilization at an accelerated rate.

(19) Finding Apkallu_1_13May2018 - Copy.JPG

 

Painting illustrating future man finding the archaeological artefact (credit: K. F. Long)

The artefact would be a form of long distance communication. We have of course attempted message plaques in the past such as the Voyager Golden Record and the Pioneer Plaque. Indeed, the Code of Hammurabi from the Sumerian civilization is a form of minilithic artefact, but just specific to moral and legal codes. Another example would have been the tablets for the Biblical Ten Commandments.

There is a question of what materials to construct the artefact from. Plastics and metals will likely degrade over thousands of years. Electronic memory is not use if it is subject to flip switching and also requires a computer interface to read it. It therefore seems sensible to construct the artefact out of stone; perhaps in a similar manner to the Sumerian Cuneiform on wet clay tablets. One of the options may be Diorite. It would perhaps be useful to depict both logograms, with syllabic and alphabetic elements, as well as phonetics and even determinatives to create appropriate semantic descriptions.

There is a question of what information should the artefact contain. It should contain the foundation knowledge of human civilization. This is a subjective decision. One example we might take lessons from for example was the classical Trivium (logic, grammar, rhetoric) and the Quadrivium (arithmetic, geometry, music, astronomy). Both were considered preparation work before delving into the study of philosophy and theology. In addition to these, the artefact might contain many other disciplines of thought, such as human biology, medicine, architecture, chemistry, physics, law, history, music, language, agriculture, botany, ethics and other subjects. Experts in appropriate disciplines would need to be consulted to derive the say 12 base foundation knowledge or tenets that govern a field from which in principle all else can be derived given time.

The goal of the information content imprinted onto the artefact would be as follows:

·         Goal 1: The continued survival of the human species at peace.

·         Goal 2: The accelerated technological, social-cultural growth of human civilization from an assumed stagnated level.

·         Goal 3: The preservation of moral and ethical philosophy

There is also a question of what language. One approach would be to take lessons from historical artefacts which contained several languages to ensure future interpretation. This includes the Rossetta Stone (2,200 years old) which contains ancient Egyptian hieroglyphics, demotic and ancient Greek. Another example is the Fuente Magna of the Americas (5,000 years old), found in Bolvia but contains both ancient Pukara and a proto-Sumerian alphabet. Another example is the Behistun inscription (2,500 years old) found in Iran, which contains three different cuneiform script languages, that of Old Persian, Elamite and Babylonian.

There is also the question of the size and shape of the artefact, and although you want it big enough to find, you also want to manage the construction cost of the project. Something around 6 – 12 inches would seem a good optimum size. The exact shape would have multiple surface areas to facilitate different disciplines of knowledge. One idea is a Dodecahedron, which has 12 faces.

The proposal of the Apkallu Initiative is to form a team which then designs and leads the construction of such an artefact. This can then be reproduced and distributed to different locations around the world. Some would eventually be displayed in art galleries or museums and some will be lost to the land and sea, but the hope is that in the event of the cataclysmic scenario described above that future human will stumble across such an artefact, and after studying it, teach their community everything they need to become a civilized and socially-technologically advanced society. Currently no team has been formed, but this article is an initial invitation of interest and anyone interested can contact the web site: https://www.apkalluinitiative.com/

Our ability to become an interstellar capable species depends in the near term on our ability to survive here on Earth or in near-space. The preservation of the deep knowledge and learning of the human experience is critical to this future, if we are to continue to progress, avoid stagnation and decay or even complete extinction or avoid repeating mistakes of the past.

Finally, such a project has the potential to inspire long-term thinking among differing human societies, and so in itself may be a self-perpetuating mechanism toward social-cultural harmonization and increased global awareness of our fragility in the great Cosmos. In addition, because of its inter-disciplinary nature, it has the potential to involve all of humanity on its journey, as we jointly work toward a back-up plan to ensure that humanity can survive in the millennia ahead.

The author dedicates this article to the efforts of Graham Hancock and Randall Carlson, whose significant research inspired this initiative. It was written to garner scrutiny of the idea, before deciding whether to proceed or not. Feedback is invited.

 

 

 

Comment

Comment

Stellar Scale Engineering

The concept of stellar engineering refers to the deliberate orchestration of artificial changes to a star or other similar astronomical object for the purposes of engineering a useful construction, power source or some other function. Its minor cousin, planetary engineering (the engineering of planets) has been nicely discussed by others[1].

In 1964 the Soviet astronomer Nikolai Kardashev proposed[2] a scale for measuring the output of interstellar civilisations in the Cosmos that can be used for long distance communications. This has come to be known as the ‘Kardashev scale’, and three types of civilisation were defined.

A Type I civilisation has the capacity to store all of the energy which reaches a home place from its parent star. For the Earth this is of order ~10^17 Watts, when the reality is that today our power consumption for the present civilisation is around ~10^12 Watts or equivalent to an energy consumption of ~10^19 erg/second (where 1 erg is equal to 10^-7 J of energy).

A Type II civilisation has the capacity to harness the total energy of its parent star. The total power output of the Sun is around ~10^26 Watts or equivalent to ~10^33 erg/second. The proposed way by which this can be achieved is through a device known as a ‘Dyson-Stapledon sphere’, more on this below.

A Type III civilisation has the capacity to control energy on the scale of the entire galaxy. The total power output of the Milky Way, defined as its luminosity, is around ~10^37 Watts or equivalent to an energy consumption of around ~10^44 erg/second.

Further work by the American astronomer Carl Sagan in 1973 proposed[3] a method of extrapolating and interpolating intermediate values, on the assumption that there was a Type 0 civilisation that would control around 1 MW of power. Using this scale, it is possible to show that human civilisation on Earth has an average world power consumption of around ~10^12 W, which means we have a Kardashev value of around 0.7. Many other versions of the Kardashev scale have now been proposed, but they all largely agree we are far from the masters of our own local energy sources as a young species.

The ability to engineer astrophysical sources, such as stars, is an interesting idea which we could equally expect a more advanced civilisation to have attempted. It is useful to briefly discuss some of the structures that could be engineered in the universe by those other species or by a future human kind.

Dyson-Stapledon Spheres: These objects were first suggested by the British philosopher Olaf Stapledon in his 1937 novel Star Maker[4]. The idea was later picked up and refined as a thought experiment by the physicist Freeman Dyson in 1960[5] who reasoned that such a structure would be a result of the escalating energy needs of a technological civilisation. Such a sphere, or set of orbiting structures would completely encompass a star and capture all or the majority of its power output. It would be uniquely distinguished by an infra-red emission spectrum which would make such structures detectable to long distance observations.

One has to ask however, whether such an advanced civilisation with escalating energy needs would instead choose to occupy other star systems by interstellar diffusion, rather than huddling around the light of one lone object? More credible versions of this idea known as a Dyson Swarm consists of many large number of independent constructions orbiting in a dense formation around a star. Another variant is a Ring World, a hypothetical orbiting structure around a star, but rather than a complete sphere, it is instead a ring. The idea was popularised in a 1970 science fiction novel by Larry Niven[6].

Matrioska Brains: This is another type of hypothetical that is really an extension of the Dyson-Stapledon sphere, but instead of power output purely for energy conversion the output is used to drive massive computational capacity. The idea was conceived by Robert Bradbury and the concept takes its name from Russian Matrioshka dolls, since the analogy is adopted so that there are the equivalent of nested spheres within each other, each built around a star, and drawing all of its power output. The inner shell would have the temperature of the outer stellar atmosphere and the outer shell would be so cool as to be equivalent to the temperature of space. In theory, such a large computing architecture could be full artificial intelligence, or create full artificially simulated universes for people to exist in. The Matrioshka brain concept looks even more complicated that the Dyson-Stapledon sphere.

Shkadov Thruster: This is the term used to describe a type of megastructure which is able to use a stars radiation output to create usable energy, such as for the purpose of producing thrust and therefore actually accelerating the star through interstellar space, and any object orbiting it, in any direction. Several variants or classes of stellar engines have been proposed. It involves the use of a large mirror or light sail to balance gravitational attraction and radiation pressure outwards from the star, such that the net pressure of the star would be asymmetrical and the excess radiation in one direction would act as net thrust to move the star from its original position. Any planetary system that is in orbit around the star, would also be dragged through space, and so the entire Stellar System could in principle be moved. This author used a similar idea to a Shkadov thruster in a short science fiction story titled ‘The World Movers’ published in 2015, although the thrust generation was also originated from negative energy density gravitational fields[7].

All of the above megastructures are different types of Stellar Engines that could in theory be constructed by advanced extraterrestrial civilisations or by future human kind. This presents interesting observational opportunities, in looking for either ‘live’ stellar engines or ‘dead’ stellar engines, the remnants of a once forgotten civilisation.

There has been several postulated sightings of potential stellar engines by the Kepler Space Telescope. This includes the objects KIC 8462852 and EPIC 204278916, but the analysis is so far inconclusive. The former, known as Tabby’s Star is an F-type main sequence star located in the Cygnus constellation at a distance of around 1,276 Light Years. Astronomical studies of changes in the stars brightness could not be attributed to intrinsic variability and one of the hypothesis being proposed to explain the unusual blocking of the light emission is a stellar engine.

We do not yet know whether advanced extraterrestrial civilisations exist, let alone have built large megastructures, but certainly observational programs that seek such structures out, or eliminate their possibility, will add to our knowledge of life in the universe. It would seem that in our pursuit of enquiry as to the various manifestations of existence, our most powerful tool is that of the imagination, which enables us to see alternate futures that may or may not exist, and therefore help to direct our research programs. Indeed, this may be the most important service that the literature of science fiction has given left us as its legacy.

 

[1] M. J. Fogg, Engineering Planetary Environments, Society of Automotive Engineers, 1995.

[2] N. Kardashev, Transmission of Information by Extraterrestrial Civilizations, Soviet Astronomy, 8, 217, 1964.

[3] C. Sagan, Cosmic Connection: An Extraterestrial Perspective, 1973.

[4] O. Stapledon, Star Maker, 1937

[5] F. Dyson, Search for Artificial Stellar Sources of Infrared Radiation, Science, 131, 3434, pp.1667-1668, 1960.

[6] L. Niven, RingWorld, Ballantine Books, 1970.

[7] K. F. Long, The World Movers, Published in Visionary, A Science Fiction Anthology in the Spirit of the British Interplanetary Society, BIS Publication, 2013.

Comment