The year is 2050. Earth is a thriving metropolis with a population exceeding 9 billion. Progress has been made in harmonising social-cultural tensions around the world and nation state war is now an infrequent event. A young child of the future steps out into the bright sun shine of a gorgeous new morning. Her day is still ahead of her as she out stretches her arms and smiles at the mellifluous call of the singing birds. But then looking up, she notices something in the distance, a long streak across the sky that is moving rapidly, and seems to be descending towards the ground. It disappears behind the horizon, and shortly later a blinding flash engulfs the world. The girl looks on stunned, eyes struggling against the light, to see the gradual build-up of a mushroom cloud that starts to reach high into the atmosphere. The impact event was hundreds of miles away, yet soon it engulfs the world in a global climate change and sends Tsunami’s sweeping over coastal cities destroying all in the path. In response to oceanic earthquakes, the water becomes so big, that it pushes across the flat land masses; unrelenting mega white horses to a trampled poppy field below. One day, this will form into wedge shaped chevron deposits hundreds of feet high, composed of ocean floor micro-fossils. Within days of the event the girl will learn that billions of people are wiped out as the human civilization draws to a rapid stagnation. All infrastructure and governments are gone, and only small pockets of communities around the world survive, numbering thousands at best. She was one of the lucky ones, her small community of one hundred people survived just barely on their high mountain top position. This is fortunate for a girl named Hope.
= = =
Introduction
The future is uncertain. Whilst it is important to emphasise the positive reasons for the exploration of Earth and space, it is also important not to be in denial about the risks that really face us; for they are not insignificant. They are many and varied in type. From the potential for nation state warfare, to disease pandemics, to global climate change, to risks from above such as impact events by asteroids or comets or even the possibility alien invasion. The sure way to guarantee our survival is to follow the lead of Elon Musk and to make the human race an interplanetary species; and indeed to go further with an interstellar species. But until we have reached this point we are vulnerable. The proposal made in his article is not an alternative to the current plans for the colonization of space and the continued building up of infrastructure, but it is a complimentary pathway to increase the probability of human survival into the coming centuries. In particular, it should be taken on board that the assumptions of this project is that a possible future exists where rocket technology no longer even exists as a worst case survival scenario.
The Apkallu initiative is a proposed project to help re-boot human civilization, on the assumption that some small pockets of human communities survive around the world during a global cataclysm, but all the remnants of our industrialised and developed civilization are destroyed. This includes our cities, our farms, our libraries, our infrastructure, and our transport networks; in essence the human race is thrown back to being a hunter-gatherer species and must begin again. It is named after the Sumerian sages who are said to have helped human kind establish civilization and culture and giving us the gifts of a moral code, mathematics, architecture, agriculture and all ways necessary to teach us how to become civilized. The Sumerian civilization is one of the first to appear in recorded history, which included the invention of its own writing form called Cuneiform. Before we discuss what the Apkallu initiative actually is, it is worth reminding ourselves of some essential context.
Impact Threats and Other Risks to Human Survival
We know that objects have impacted the Earth throughout its history and continue to do so today. Approximately 66 million years ago, it is believed that an impact event resulted in the Cretaceous-Tertiary (K-T) extinction. This led to devastation in the global environment and a prolonged winter which affected the photosynthesis of plants and plankton life. It also resulted in the destruction of a plethora of terrestrial organisms, including mammals, birds, insects and most famously the dinosaurs. The object, an asteroid or comet, was 10-15 km in diameter with a likely impact velocity of around 20 km/s and an associated kinetic energy of impact of around 30,000 – 1000,000 Gtons TNT equivalent, depending on the assumptions. It left an impact crater in the Yucatain Peninsula in Mexico, and likely created 300 feet high Tsunami’s over an impact zone of around 3,000 miles.
Another example is the Arizona Meteor crater, which was the result of a Nickel-Iron object around 50 m in size impacting the Earth 50,000 years ago. With impact velocities ranging from 2.8 – 20 km/s this would have impacted with an associated kinetic energy of 10.7 – 26.2 Mtons TNT equivalent. Today, a crater remains of the impact event, 1.2 km in diameter and over 550 feet deep.
In 1908 a comet is believed to have impacted eastern Siberia, causing a flattening of a forest 2,000 square km in size. Since no impact crater was found, it is believed that the object disintegrated at an altitude of 5 – 10 km above the ground. The estimated energy of the air burst explosion was 10 – 15 Mtons TNT equivalent; depending on the assumptions one makes.
In July 1994 a comet split into 21 fragments ranging in size up to 2 km, and impacted the upper atmosphere of Jupiter with an impact velocity of around 60 km/s. The total energy of these impacts was around 6,000 Gtons TNT equivalent creating dark red spots with some being 12,000 km in size. Had this comet impacted the Earth, it would have posed a major threat to human existence.
During late 2017 we observed the close flyby pass of an asteroid of interstellar origins named ‘Oumuamua. Much of the nature of this objects remains uncharacterised, but some sensible estimates of the maximum potential impact energy suggest 4.2 – 46.9 Gtons TNT equivalent, had it impacted the Earth.
Then in April this year that an object named Asteroid 2018 GE3 passed closed to Earth and was spotted 119,500 miles away, which is closer than the Moon, which orbits at an average distance of 238,900 miles. The object was first observed by the NASA funded Catalina Sky Survey project based at the University of Arizona Lunar and Planetary Laboratory. It was first observed a mere 21 hours before the closest approach to the Earth. The object was estimated to be at least 150 – 360 ft in diameter.
How many more are out there waiting for us? No doubt some will argue that the impact risks are statistically small and we should not be concerned about them. We know there are many asteroids in our own Solar System, varying in size from 1 m up to 1,000 km. Approximately 16,000 objects have been found near Earth, but this is a small fraction of the estimated total that is out there, which varies between 1 – 2 million. Statistically, this presents a threat to human existence and life as we know it. Indeed, it is the belief of this author that impact events which can lead to global devastation of the human population may be as frequent as 1/1,000 – 1/10,000 years.
In addition to impact risks there are many other threats to human existence. This may include the implications of magnetic field reversal. Such an event occurred 41,400 years ago during the last ice age, called the Laschamp event. It caused a magnetic field reversal leading to a drop in its strength. This resulted in more cosmic rays reaching the Earth and an increased production of the isotopes Beryllium 10 and Carbon 14.
There are also the risk of enhanced solar activity such as through large scale solar flares, or the possibility of the Sun entering unstable periods in its evolution for which are current models of stellar-structure are not aware. This could be due to the passage of our Sun through the spiral density arms of the galaxy. There are the risks of nation state war or even global thermonuclear war that could drive us towards extinction, either through direct destruction or through altering the climate. There are the risks of human disease pandemic, which surely must become more probable in an increasing global population. There are the risks of human destruction of elements of the biosphere, such as pollutions of the oceans, soils, deforestation or polluting of the atmosphere. There are the risks that microbes could be introduced into our biosphere from an alien planet that is infectious to our biodiversity.
Then there is the actual risk of alien invasion, from a species set on conquering other lower species or seeking resource acquisition no matter the costs. It may be assessed that some of these are low probability. However, the fact that there are so many risks to the future survival of human kind should be a concern, and it is vital that we take a proactive approach to adaptability and survival, instead of a reactive one when such events occur.
Assumptions of a hypothetical Near-Human Extinction
Imagine a situation where human kind is nearly wiped out by some global cataclysm. This could be an impact event or one of the other risks highlighted earlier. In a worst case scenario, but one where some humans survive, we might make the following assumptions:
1. All infrastructure is destroyed, to include buildings, power utilities, city plumbing, damns, transport networks, agriculture and farming, huge portions of the plant and animal kingdom.
2. All information sources are destroyed, to include all the world libraries, computers and electronic memory. It is possible that some books will be discovered over time as communities explore the rubble remaining from the metropolis. Books would become precious beyond their current value.
3. The global climate is in turmoil and hostile, but with isolated regions of stability such that with determination survival is possible.
4. The geological, climatic, oceanic activity and effects of the cataclysm event, within weeks, months or years will gradually return towards some level of stable Earth.
5. Small pockets of humans survive around the Earth, perhaps 10s to 100s each but with the total not exceeding thousands.
Given this scenario, we can note that the surviving generation will remember the world as it was before. They will use this knowledge to teach their children. At this point knowledge is based upon direct memory. Those children will then grow up, with their parents dying off, and they will remember what their parents taught them and some of those children may even have some memories of the world before. But for the most part we are dealing here with recent history and part mythology. The grandchildren will also be born and grow up, but they will have no direct memory of the world the way it was before. At this point we are dealing with history and mythology. Within the third or fourth generation there is a risk that all knowledge will be lost, and especially if that knowledge is not captured and written down. All received knowledge then becomes both mythology and fantasy.
There are solutions to this practiced by the Native North Americans for example, which is to communicate stories verbally and also use this to impart wisdom, and those stories are accompanied by rituals. However, one cannot believe that such a method of communication does not contain significant information error propagation with each successive generation, compared to the original version.
The History of Humans on Planet Earth
In the event of a global cataclysm, assuming small pockets of human communities survive, but the majority of human civilization and associated technological infrastructure is destroyed, how can we ensure a chance at rebooting human knowledge? Indeed, is it possible that this has in fact occurred in the recent past and this is a part reason for the many Megalithic structures on Earth?
Until recently, Sumer was the earliest known civilization in the historical Mesopotamia, and is located in modern Iraq. It dates back to 3,000 B.C and was likely settled around 4,000-5,500 B.C by proto-Euphrateans or Ubaidians. The people from this era are credited for many great inventions and discoveries which led to the advance of their society. This includes in mathematics, geometry, agriculture, architecture, economics and law to name a few. One of the most famous objects discovered from this period is the Code of Hammurabi, a 2.25 m tall stone wall consisting of 282 laws, such as “an eye for an eye” and is the first legal system from the Old Babylonian period.